3 resultados para compatibility

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bitumen modification by polyethylene addition usually improves the mechanical properties of the binder and, therefore, the behavior in service of the bituminous mix: thermal susceptibility and rutting can be diminished, whilst the resistance to low temperature cracking may increase. To achieve this improvement it is necessary a good compatibility between the base bitumen and the polyethylene. Low compatibility between bitumen and polyethylene can lead to phase separation: the polymer- asphalt incompatibility translates into a deterioration of ultimate properties. The object of this research project was to determine if these problems can be diminished by using certain compatibilizer agents, e.g. an aromatic extract from the oil refinery. Compatibility and stability of the polyethylene modified bitumen were studied using conventional test methods and dynamic shear reometer (DSR). Blends of bitumen and polyethylene were prepared with neat bitumen (PMB) or bitumen with compatibilizer as component of the binder (PMBC) and then compared. The experimental results show that “colloid instability index”(IC) is a parameter that can be used to control the compatibility between bitumen and polyethylene. From polyethylene point of view, one of the parameters that govern is the “melt flow index” (MFI). Experimental results show that PMBC formulated with low IC bitumen and hi gh MFI lineal polyethylene can be considered as stable binder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aviation companies are facing some problems that argue in favor of biofuels: Rising cost of traditional fuel: from 0.71 USD/gallon in May 2003 to 3.09 USD/gallon in January 2012. Environmental concerns: direct emissions from aviation account for about 3 % of the EU’s total greenhouse gas emissions. The International Civil Aviation Organization (ICAO) forecasts that by 2050 they could grow by a further 300-700 %. On December 20th 2006 the European Commission approved a law proposal to include the civil aviation sector in the European market of carbon dioxide emission rights (European Union Emissions Trading System, EUETS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El desarrollo de bioqueroseno de diferentes orígenes y su uso creciente, hacen necesario el estudio de la compatibilidad estos nuevos combustibles con los materiales y recubrimientos con los que se encuentra en contacto. Por tanto, el presente proyecto estudia la compatibilidad de los bioquerosenos mezclados en diferentes proporciones con queroseno mineral, para evaluar posteriormente su compatibilidad con diferentes polímeros y composites presentes en la estructura de un avión.Currently there is a big interest to increase the sources of alternative fuels for aviation to get a reduction of their carbon footprint and the deep energetic dependence from fossil fuels of different countries. Although there are studies about how to produce this alternative fuel and how to accomplish the standards for a good performance in the aircraft turbines, there are no studies about how these fuels could affect the different materials of airplanes. In this context this work describes the compatibility of biokerosene blends of coconut, babassu and palm kernel with commercial Jet A-1 testing airplane polymeric materials, metals and composites. As a conclusion, all material samples show a good compatibility with the fuel blends tested.